Nonvanishing of L-functions, the Ramanujan Conjecture, and Families of Hecke Characters

نویسندگان

  • Valentin Blomer
  • Farrell Brumley
چکیده

We prove a nonvanishing result for families of GLn × GLn Rankin–Selberg L-functions in the critical strip, as one factor runs over twists by Hecke characters. As an application, we simplify the proof, due to Luo, Rudnick, and Sarnak, of the best known bounds towards the Generalized Ramanujan Conjecture at the infinite places for cusp forms on GLn. A key ingredient is the regularization of the units in residue classes by the use of an Arakelov ray class group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The central value of the Rankin-Selberg L-functions

The values of L-functions at special points have been the subject of intensive studies. For example, a good positive lower bound for the central value of Hecke L-functions would rule out the existence of the Landau-Siegel zero, see the notable paper [IS]; the nonvanishing of certain Rankin-Selberg L-functions is a crucial ingredient in the current development of the generalized Ramanujan conjec...

متن کامل

Nonvanishing of Hecke L–functions for Cm Fields and Ranks of Abelian Varieties

In this paper we prove a nonvanishing theorem for central values of L– functions associated to a large class of algebraic Hecke characters of CM number fields. A key ingredient in the proof is an asymptotic formula for the average of these central values. We combine the nonvanishing theorem with work of Tian and Zhang [TZ] to deduce that infinitely many of the CM abelian varieties associated to...

متن کامل

Quantitative Nonvanishing of L-series Associated to Canonical Hecke Characters

We prove quantitative nonvanishing theorems for central values and central derivatives of L–series associated to canonical Hecke characters of imaginary quadratic fields. These results have applications to the study of Chow groups of Kuga-Sato varieties. Some key ingredients in the proofs are bounds for `-torsion in class groups obtained recently by Ellenberg and Venkatesh [EV], and subconvexit...

متن کامل

Common Zeros of Theta Functions and Central Hecke L-values of Cm Number Fields of Degree 4

In this note, we apply the method of Rodriguez Villegas and Yang (1996) to construct a family of infinite many theta series over the HilbertBlumenthal modular surfaces with a common zero. We also relate the nonvanishing of the central L-values of certain Hecke characters of non-biquadratic CM number fields of degree 4 to the nonvanishing of theta functions at CM points in the Hilbert-Blumenthal...

متن کامل

Effective Nonvanishing of Canonical Hecke L-functions

Motivated by work of Gross, Rohrlich, and more recently Kim, Masri, and Yang, we investigate the nonvanishing of central values of L-functions of “canonical” weight 2k−1 Hecke characters for Q( √ −p), where 3 < p ≡ 3 (mod 4) is prime. Using the work of Rodriguez-Villegas and Zagier, we show that there are nonvanishing central values provided that p ≥ 6.5(k−1) and (−1) ( 2 p ) = 1. Moreover, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012